

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Prospects for Precision Neutrino Cross Section Measurements

Deborah Harris NuFact 2015 CBPF, Rio de Janeiro August 13, 2015

Why Precision Cross Sections?

- Understand more about how neutrinos interact with p,n
- Understand more about the nuclear environment
 - e- scattering, but with fewer events, harder energy reconstruction, and higher flux uncertainties
- To help provide input for Oscillation Experiments
 - Example at right: NOvA sees difference in hadron and neutrino energies: why?

R. Patterson, FNAL JETP 8/15

How external cross section measurements help?

 Experiments have a more or less universal scheme for using the near detector data to get flux and cross-section

External Hadroproduction and Beam Simulation

Near Detector Rate Measurements

External Cross-Section Measurements and Models

Separated Flux and Cross-Sections

 Because of limitations of near detector technique, these rely on accurate models

Graphic courtesy K. McFarland

What does precision mean?

- What tests a model better:
 - A 1% measurement of the absolute neutrino quasi-elastic cross section on your favorite nucleus as a function of your favorite kinematic variable?
 - 10 measurements of 10% precision on a broad range of
 - Interaction channels
 - Neutrino energies
 - Target nuclei
 - You be the judge...

Example: Inclusive pion production on Carbon

- Important signal process for NOvA
- Background for T2K, process
- Very sensitive to effects of nucleus
- Models tested with 15-20% differential measurements by comparing across energy

On the road to precision...

- Broad Range of Neutrino Energies
 - To get to broad range of interaction channels
- Broad Range of Target Nuclei
 - To constrain both the nucleon-level processes and the role of the nucleus in what actually enters the detector
- Capable detectors
 - Low thresholds, good particle ID needed
- Capable Beamlines
 - Provide the statistics: but need good flux constraints too!

Need to study broad range of neutrino interactions

- This means a broad range of neutrino energies
 - Beams from 600MeV through 6 GeV
 - Tells us which channels are accessible
 - Neutrino and Antineutrino
 - v_e and v_u both, ideally!

v_{μ} Fluxes Available

- T2K
 - Off Axis: 700MeV narrow band beam
 - On axis: 1 GeV broad band beam
- Booster Neutrino Beam
 - 1GeV, broad band
- NuMI
 - On axis: 3, 6 GeV
 broad band beams
 - Off axis: 2 GeV beam

Plot adapted from P. Rodrigues, WINP

A. Higuera, Fermilab W&C Aug. 2014

One limit to precision: Fluxes and their uncertainties

T2K off Axis

Flux (/cm²/50MeV/10²1p.o.t) Near M. Wascko, Fermilab JETP Nov. 2014 $\# \overline{\nu}_{\mathrm{e}}$ detector flux E_{v} (GeV) Fractional Error Total ····· Hadronic Interactions Proton Beam, Alignment and Off-axis Angle Horn Current & Field 0.1 10^{-1} E_{ν} (GeV) NuMI On Axis

Flux uncertainties on all species: BNB study

- Tables from determination of Booster Neutrino Beam flux uncertainties: (PRD 79 (2009) 072002)
- Note that the ν_e flux uncertainties are slightly smaller than the corresponding $\nu_{\rm u}$ flux uncertainties
- Incorporate results from HARP, dedicated hadron production experiment

Source of Uncertainty	$ u_{\mu}$	$ u_e$
Proton delivery	2.0%	2.0%
Proton optics	1.0%	1.0%
π^+ production	14.7%	9.3%
π^- production	0.0%	0.0%
K^+ production	0.9%	11.5%
K^0 production	0.0%	2.1%
Horn field	2.2%	0.6%
Nucleon cross sections	2.8%	3.3%
Pion cross sections	1.2%	0.8%

Source of Uncertainty	$\overline{ u}_{\mu}$	$\overline{ u}_e$
Proton delivery	2.0%	2.0%
Proton optics	1.0%	1.0%
π^+ production	0.1%	0.1%
π^- production	17.5%	13.6%
K^+ production	0.0%	0.4%
K^0 production	0.0%	3.9%
Horn field	1.0%	1.5%
Nucleon cross sections	2.1%	2.5%
Pion cross sections	1.2%	1.5%

Testing Models: Broad Range of nuclei

 Important: even if far detector is one nucleus, want to get nuclear effect models right so need to test several nuclei

Another precision limit: the number of nuclei measured

Other requirements for precision tests of models

- Detector Capability
 - Could define as proton tracking threshold?
- Different capabilities mean we have to be that much more careful about how we define signal channel
- Move to "final state description" instead of process (CC 0π , instead of CCQE, for example)
- New Capabilities mean that we can compare hadron side of reaction with lepton side of reaction (see MINERvA ν_μ CCQE results)

7 ways of looking at Neutrino Interactions

All different levels of signal and vertex energy identification

Limits of Precision from understanding detector

- Test beam programs are important components for cross-section measurements
 - MINERvA has low and medium energy test beam data ranging from 0.4 to 8GeV

 Typical total beam energy uncertainties: 3-4%

Event display from LAriAT from earlier this year: incoming

pions on Argon

 Taking data in low energy beam at FTBF: ~0.4-2GeV

Current v_{μ} Scoresheet

Energy/ Target	700MeV	1GeV	2GeV	3GeV	6GeV
С				MINERVA	MINERvA
CH ₂		MiniBooNE			
CH	ND280	INGRID	NovA	MINERVA	MINERvA
H ₂ O	ND280			MINERvA	
Ar		MicroBooNE		Argoneut	
Fe		INGRID		MINERVA, MINOS	MINERVA, MINOS+
Pb				MINERvA	MINERvA

This represents data already taken to date

v_{μ} Process Scoresheet (Results)

Energy/ Target	700MeV	1GeV	2GeV	3GeV	6GeV
CH ₂		CCQE, π production			
CH	CCQE	CCQE		CCQE, π prod.	
H ₂ O					
Ar				CCINC, Coherent, CC-no π	
Fe		CCINCL Ratio		CCQE, π prod, coherent, CCINCL ratio	
Pb				CCINCL ratio	

 This is a great start, but there are many other channels that can be probed with these data sets

Current anti- ν_{μ} Scoresheet

Energy/ Target	700MeV	1GeV	2GeV	3GeV	6GeV
С				MINERVA	MINERvA
CH ₂		MiniBooNE			
CH	ND280	INGRID		MINERvA	
H ₂ O	ND280			Argoneut	
Ar					
Fe		INGRID		MINERVA, MINOS	
Pb				MINERvA	

This represents data already taken to date

Anti-v_u Process Scoresheet (Results)

Energy/ Target	700MeV	1GeV	2Ge V	3GeV	6GeV
CH ₂		CCQE, π production			
CH				CCQE, π prod.	
H ₂ O					
Ar				CCINC, Coherent,	
Fe					
Pb					

Many analyses still to come!

ν_e Process Scoresheet (Results)

Energy/ Target	700MeV	1GeV	2Ge V	3GeV	6GeV
CH ₂					
CH	CCINCL			CCQE (Wolcott)	
H ₂ O					
Ar					
Fe					
Pb					

Should not forget about these channels

What is next?

- Need to keep extracting results from current data sets
 - More handles on CCQE
 - CCQE ratios across different nuclei
 - New look at CCQE and pion production with Argon w/ MicroBooNE
 - What other clues are there on pion production?
 - Inclusive Ratio for different nuclei Improvements
 - Looking at DIS ratios at MINERvA
 - Antineutrino CC Inclusive ratios at MINERvA

Upcoming results from NOvA

- Analyses Underway (J. Paley, NuFact15)
 - $\nu_{\mu} CC$
 - $-v_e + A$
 - -v + e (flux constraint)
 - Coherent π^0

- Flux (21%)
- Energy scale (10-15%)
- Improve both with MIPP and supporting ν_{μ} analyses

Upcoming results from T2K

- On Axis
 - QE two-track versus QE-like
 - Multi-nucleon searches
 - QE double differential
 - Charged pion double differential
 - Neutral Pions
 - Coherent charged (neutral?)
 - More v_e cross sections
 - Nuclear Ratios (w/H₂0, Pb,
 CH) for model comparisons
 - Pion multiplicities

On Axis

- Energy dependent ν_{μ} CC inclusive on Fe
- ν_{μ} CC Coherent pion production on C
- ν_{μ} CC 0π differential on C

From K. Mahn

Upcoming results from MINERvA

- v_e CCQE cross sections (Ghosh)
- Nuclear target ratios for DIS events (Bravar)
- v_{\parallel} CCQE double differential (Carneiro)
- CCQE on Fe, Pb, C compared to CH in Low Energy Beam
- Medium Energy results will feature much higher statistics
 - Higher flux and cross section, higher numbers of protons on target collected
 - Exclusive channel ratio results for Fe, Pb, C, compared to CH

Chance to look at nuclear effects in DIS at few per cent level!

Where are we lacking statistical precision we need?

- Need more events on Argon
 - MicroBooNE taking first statistics at 1GeV
 - 3GeV and above Neutrinos on Agron: handfuls of events recorded, need more!
- Nuclear Target Inclusive and pion cross section ratios at MINERvA: needs Medium Energy antineutrino data
- v_e data sets in their infancy: individual channels hard to isolate even in cross section detectors

Next Step for 1GeV LAr Measurements

- 3 detectors, statistics at 5M!
- Mix of CCQE, Resonance
- Events below for 6.6E20POT
- LAr1-ND: 3M CCQE, >1M pion production events
- All detectors have fine granularity

F. Cavanna, WINP

Detector	Distance	Fiducial Mass	CC ν _μ events	CC v _e events
MicroBooNE	470m	61t	122k	800
LAr1-ND	110m	112t	5.2M	38k
ICARUS	600m	476t	550k	2k

Next step for 3-6GeV LAr precision: CAPTAIN MINERVA

- Install the CAPTAIN detector in MINERvA to study neutrino-argon interactions in the medium-energy NuMI beam
- CAPTAIN-MINERvA can measure cross section ratios (i.e., argon to carbon)
 - More stringent tests of the models can be performed with ratios due to cancellation of large systematic uncertainties such as the neutrino flux
- Stage I approval from Fermilab Director

@6x1020 POT	Events with reco. μ	Events with reco.μ + chg
CCQE-like	900k	800k
CC 1π [±]	2000k	1000k
CC 1π ⁰	1600k	600k

L. Whitehead, FNAL PAC 6/15

Getting to a MonoChromatic Neutrino Beams

NUPRISM:

- Take advantage of
 2-body decay
 kinematics to "create"
 monochromatic
 energy beams
- Not for the faint of heart, will need a lot of statistics to do subtractions from different locations
- Best chance at directly quantifying this picture
- What about other targets?

SciNOvA

- Add SciBar in front of NOvA's Near Detector
- In situ check of backgrounds to ne search in NOvA's FD
- Would also be a great way to see energy dependence of CC and NC interactions by comparing to MINERvA events
 - Fluxes very correlated
 - Nucleus is the same

M. Messier, 2011 FNAL PAC talk

Conclusions

- We need to harvest the impressive data that is already recorded
 - MINERvA Medium Energy program
 - NOvA
 - T2K ND280 and INGRID
- Need to get good statistics in anti-neutrino mode and harvest that data as well!
- Many plans for improved cross section measurements
 - MicroBooNE followed by SBND
- Short term future projects seeking funding
 - CAPTAIN MINERvA, SciNOvA
- Longer term program: NuPRISM, WAGASCI, TITUS

FINAL Scoresheet including future prospects

Energy/ Target	700MeV	1GeV	2GeV	3GeV	6GeV
С				MINERvA	MINERvA
CH ₂		MiniBooNE			
CH	ND280	INGRID	NovA	MINERvA	MINERvA
H ₂ O	ND280, NUPRISM	NUPRISM		MINERVA	
Ar		MicroBooNE, SBND		CAPTAIN- MINERVA	CAPTAIN- MINERVA
Fe		INGRID		MINERVA, MINOS	MINERVA, MINOS+
Pb				MINERvA	MINERvA

Now picture 3-4 interaction channels per box, times 2 (ν + anti- ν) We have a great opportunity here for a much more complete picture